3.344 \(\int \frac{x^{13/2}}{(b x^2+c x^4)^3} \, dx\)

Optimal. Leaf size=239 \[ \frac{5 \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}-\frac{5 \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}-\frac{5 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}+\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2} \]

[Out]

x^(3/2)/(4*b*(b + c*x^2)^2) + (5*x^(3/2))/(16*b^2*(b + c*x^2)) - (5*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/
4)])/(32*Sqrt[2]*b^(9/4)*c^(3/4)) + (5*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(32*Sqrt[2]*b^(9/4)*c^(3
/4)) + (5*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(9/4)*c^(3/4)) - (5*Log[Sq
rt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(9/4)*c^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.184859, antiderivative size = 239, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.474, Rules used = {1584, 290, 329, 297, 1162, 617, 204, 1165, 628} \[ \frac{5 \log \left (-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}-\frac{5 \log \left (\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{b}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}-\frac{5 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}+1\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}+\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[x^(13/2)/(b*x^2 + c*x^4)^3,x]

[Out]

x^(3/2)/(4*b*(b + c*x^2)^2) + (5*x^(3/2))/(16*b^2*(b + c*x^2)) - (5*ArcTan[1 - (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/
4)])/(32*Sqrt[2]*b^(9/4)*c^(3/4)) + (5*ArcTan[1 + (Sqrt[2]*c^(1/4)*Sqrt[x])/b^(1/4)])/(32*Sqrt[2]*b^(9/4)*c^(3
/4)) + (5*Log[Sqrt[b] - Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(9/4)*c^(3/4)) - (5*Log[Sq
rt[b] + Sqrt[2]*b^(1/4)*c^(1/4)*Sqrt[x] + Sqrt[c]*x])/(64*Sqrt[2]*b^(9/4)*c^(3/4))

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^{13/2}}{\left (b x^2+c x^4\right )^3} \, dx &=\int \frac{\sqrt{x}}{\left (b+c x^2\right )^3} \, dx\\ &=\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2}+\frac{5 \int \frac{\sqrt{x}}{\left (b+c x^2\right )^2} \, dx}{8 b}\\ &=\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}+\frac{5 \int \frac{\sqrt{x}}{b+c x^2} \, dx}{32 b^2}\\ &=\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}+\frac{5 \operatorname{Subst}\left (\int \frac{x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{16 b^2}\\ &=\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}-\frac{5 \operatorname{Subst}\left (\int \frac{\sqrt{b}-\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{32 b^2 \sqrt{c}}+\frac{5 \operatorname{Subst}\left (\int \frac{\sqrt{b}+\sqrt{c} x^2}{b+c x^4} \, dx,x,\sqrt{x}\right )}{32 b^2 \sqrt{c}}\\ &=\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}+\frac{5 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{64 b^2 c}+\frac{5 \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}+x^2} \, dx,x,\sqrt{x}\right )}{64 b^2 c}+\frac{5 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{b}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{b}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{b} x}{\sqrt [4]{c}}-x^2} \, dx,x,\sqrt{x}\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}\\ &=\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}+\frac{5 \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}-\frac{5 \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}-\frac{5 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}\\ &=\frac{x^{3/2}}{4 b \left (b+c x^2\right )^2}+\frac{5 x^{3/2}}{16 b^2 \left (b+c x^2\right )}-\frac{5 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{b}}\right )}{32 \sqrt{2} b^{9/4} c^{3/4}}+\frac{5 \log \left (\sqrt{b}-\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}-\frac{5 \log \left (\sqrt{b}+\sqrt{2} \sqrt [4]{b} \sqrt [4]{c} \sqrt{x}+\sqrt{c} x\right )}{64 \sqrt{2} b^{9/4} c^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0054439, size = 29, normalized size = 0.12 \[ \frac{2 x^{3/2} \, _2F_1\left (\frac{3}{4},3;\frac{7}{4};-\frac{c x^2}{b}\right )}{3 b^3} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(13/2)/(b*x^2 + c*x^4)^3,x]

[Out]

(2*x^(3/2)*Hypergeometric2F1[3/4, 3, 7/4, -((c*x^2)/b)])/(3*b^3)

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 175, normalized size = 0.7 \begin{align*}{\frac{1}{4\,b \left ( c{x}^{2}+b \right ) ^{2}}{x}^{{\frac{3}{2}}}}+{\frac{5}{16\,{b}^{2} \left ( c{x}^{2}+b \right ) }{x}^{{\frac{3}{2}}}}+{\frac{5\,\sqrt{2}}{128\,{b}^{2}c}\ln \left ({ \left ( x-\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) \left ( x+\sqrt [4]{{\frac{b}{c}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{b}{c}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}+{\frac{5\,\sqrt{2}}{64\,{b}^{2}c}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}+{\frac{5\,\sqrt{2}}{64\,{b}^{2}c}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{b}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(13/2)/(c*x^4+b*x^2)^3,x)

[Out]

1/4*x^(3/2)/b/(c*x^2+b)^2+5/16*x^(3/2)/b^2/(c*x^2+b)+5/128/b^2/c/(b/c)^(1/4)*2^(1/2)*ln((x-(b/c)^(1/4)*x^(1/2)
*2^(1/2)+(b/c)^(1/2))/(x+(b/c)^(1/4)*x^(1/2)*2^(1/2)+(b/c)^(1/2)))+5/64/b^2/c/(b/c)^(1/4)*2^(1/2)*arctan(2^(1/
2)/(b/c)^(1/4)*x^(1/2)+1)+5/64/b^2/c/(b/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b/c)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(13/2)/(c*x^4+b*x^2)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38819, size = 602, normalized size = 2.52 \begin{align*} -\frac{20 \,{\left (b^{2} c^{2} x^{4} + 2 \, b^{3} c x^{2} + b^{4}\right )} \left (-\frac{1}{b^{9} c^{3}}\right )^{\frac{1}{4}} \arctan \left (\sqrt{-b^{5} c \sqrt{-\frac{1}{b^{9} c^{3}}} + x} b^{2} c \left (-\frac{1}{b^{9} c^{3}}\right )^{\frac{1}{4}} - b^{2} c \sqrt{x} \left (-\frac{1}{b^{9} c^{3}}\right )^{\frac{1}{4}}\right ) - 5 \,{\left (b^{2} c^{2} x^{4} + 2 \, b^{3} c x^{2} + b^{4}\right )} \left (-\frac{1}{b^{9} c^{3}}\right )^{\frac{1}{4}} \log \left (b^{7} c^{2} \left (-\frac{1}{b^{9} c^{3}}\right )^{\frac{3}{4}} + \sqrt{x}\right ) + 5 \,{\left (b^{2} c^{2} x^{4} + 2 \, b^{3} c x^{2} + b^{4}\right )} \left (-\frac{1}{b^{9} c^{3}}\right )^{\frac{1}{4}} \log \left (-b^{7} c^{2} \left (-\frac{1}{b^{9} c^{3}}\right )^{\frac{3}{4}} + \sqrt{x}\right ) - 4 \,{\left (5 \, c x^{3} + 9 \, b x\right )} \sqrt{x}}{64 \,{\left (b^{2} c^{2} x^{4} + 2 \, b^{3} c x^{2} + b^{4}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(13/2)/(c*x^4+b*x^2)^3,x, algorithm="fricas")

[Out]

-1/64*(20*(b^2*c^2*x^4 + 2*b^3*c*x^2 + b^4)*(-1/(b^9*c^3))^(1/4)*arctan(sqrt(-b^5*c*sqrt(-1/(b^9*c^3)) + x)*b^
2*c*(-1/(b^9*c^3))^(1/4) - b^2*c*sqrt(x)*(-1/(b^9*c^3))^(1/4)) - 5*(b^2*c^2*x^4 + 2*b^3*c*x^2 + b^4)*(-1/(b^9*
c^3))^(1/4)*log(b^7*c^2*(-1/(b^9*c^3))^(3/4) + sqrt(x)) + 5*(b^2*c^2*x^4 + 2*b^3*c*x^2 + b^4)*(-1/(b^9*c^3))^(
1/4)*log(-b^7*c^2*(-1/(b^9*c^3))^(3/4) + sqrt(x)) - 4*(5*c*x^3 + 9*b*x)*sqrt(x))/(b^2*c^2*x^4 + 2*b^3*c*x^2 +
b^4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(13/2)/(c*x**4+b*x**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.15694, size = 282, normalized size = 1.18 \begin{align*} \frac{5 \, c x^{\frac{7}{2}} + 9 \, b x^{\frac{3}{2}}}{16 \,{\left (c x^{2} + b\right )}^{2} b^{2}} + \frac{5 \, \sqrt{2} \left (b c^{3}\right )^{\frac{3}{4}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{64 \, b^{3} c^{3}} + \frac{5 \, \sqrt{2} \left (b c^{3}\right )^{\frac{3}{4}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{b}{c}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{b}{c}\right )^{\frac{1}{4}}}\right )}{64 \, b^{3} c^{3}} - \frac{5 \, \sqrt{2} \left (b c^{3}\right )^{\frac{3}{4}} \log \left (\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{128 \, b^{3} c^{3}} + \frac{5 \, \sqrt{2} \left (b c^{3}\right )^{\frac{3}{4}} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{b}{c}\right )^{\frac{1}{4}} + x + \sqrt{\frac{b}{c}}\right )}{128 \, b^{3} c^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(13/2)/(c*x^4+b*x^2)^3,x, algorithm="giac")

[Out]

1/16*(5*c*x^(7/2) + 9*b*x^(3/2))/((c*x^2 + b)^2*b^2) + 5/64*sqrt(2)*(b*c^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*
(b/c)^(1/4) + 2*sqrt(x))/(b/c)^(1/4))/(b^3*c^3) + 5/64*sqrt(2)*(b*c^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(b/c
)^(1/4) - 2*sqrt(x))/(b/c)^(1/4))/(b^3*c^3) - 5/128*sqrt(2)*(b*c^3)^(3/4)*log(sqrt(2)*sqrt(x)*(b/c)^(1/4) + x
+ sqrt(b/c))/(b^3*c^3) + 5/128*sqrt(2)*(b*c^3)^(3/4)*log(-sqrt(2)*sqrt(x)*(b/c)^(1/4) + x + sqrt(b/c))/(b^3*c^
3)